Part Number Hot Search : 
M78L0 BC214C 71418 13003X AA1A3QC N74ACT 74VCX16 60125
Product Description
Full Text Search
 

To Download AV60A-048L-033D025N-8L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  a a v v 6 6 0 0 a a d d u u a a l l o o u u t t p p u u t t h h a a l l f f - - b b r r i i c c k k t t e e c c h h n n i i c c a a l l r r e e f f e e r r e e n n c c e e n n o o t t e e s s 48v input, 5v/3.3v and 3.3v/2.5v dual output 48v input, 5v/3.3v and 3.3v/2.5v dual output 75w dc-dc converter 75w dc-dc converter (rev 01) (rev 01) -1- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 publishing date: 20020625
introduction introduction av60a dual output series provides two inde- pendent and fully regulated positive outputs, the outputs are also separately trimmable. a remote on/off feature is included as standard. av60a dual output isolated dc/dc converters is built using the industry standard half-brick pin-out and package 61.0mm x 57.9mm x 12.7mm (2.4" x 2.28" x 0.5"). typical efficien- cies are 82% for the 5v/3.3v outputs, and 80% for the 3.3v/2.5v outputs. the av60a dual out- put series is available with 2:1 input range of 36v-75v, and with output combination of 5v/3.3v and 3.3v/2.5v at maximum current of 15 amps. the maximum current can be drawn from either output, or in any combination, as long as the total output current does not exceed 15 amps. the output power is 75w. the input- output isolation is 1500vdc. av60a dual output series is designed to meet cispr22, fcc class a, ul, tuv, and csa certifications. features features 1. two independent positive outputs 2. each output is separately trimmable 3. cnt function 4. high efficiency 5. high power density 6. low output noise 7. metal baseplate 8. input undervoltage protection 9. short circuit protection 10. over current protection 11. output overvoltage protection 12. wide operating case temperature: -40c ~ 100c a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -2- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -3- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com t t ypical application ypical application fuse* trim2 +vo1 -vo1 -vo2 +vo2 -vin cnt +vin c4 case vin c1 cnt load2 c2 load1 c3 c5 trim1 c6 block diagram block diagram note: the figure is positive logic control, if the cnt pin is left open, the converter will default to ?control on? operation. negative logic control is also available . positive logic control: low=off, negative logic control: low=on, high=on. high=off. recommended external components: fuse* : recommended: 3~4a. c1 : recommended 470 f/100v. c3=c5 : recommended electrolytic capacitor of 470 f/16v. c2=c4 : recommended metallitic film capacitor of 0.47 f/16v. c6 : recommended 0.01 f/1500v. emi filter ocp pwm +vin -vin cnt to -vin feed- back 1 2 3 4 5 6 +vo1 -vo1 trim1 pwm error amp 8 7 +vo2 -vo2 9 trim2
ordering information ordering information av60a-048l-050d033 48 5, 3.3 15, 15* 30 150 80 82 io1=15a, io2=0a 82 io1=7.5a, io2=7.5a 79 io1=1.5a, io2=15a av60a-048l-033d025 48 3.3, 2.5 15, 15* 25 150 78 80 io1=15a, io2=0a 80 io1=7.5a, io2=7.5a 76 io1=1.5a, io2=15a av60a-048l-050d033n* 48 5, 3.3 15, 15* 30 150 80 82 io1=15a, io2=0a 82 io1=7.5a, io2=7.5a 79 io1=1.5a, io2=15a av60a-048l-033d025n * 48 3.3, 2.5 15, 15* 25 150 78 80 io1=15a, io2=0a 80 io1=7.5a, io2=7.5a 76 io1=1.5a, io2=15a note: the maximum output current of auxiliary output vo2 is 12a when the case temperature is between 80~100 c. the products with suffix ?n? refer to the negative logic control products, default is positive logic control. the products with suf fix ?-7? refer to products with pin length of 5.8mm. the products with suf fix ?-6? refer to products with pin length of 3.8mm. the products with suf fix ?-8? refer to products with pin length of 2.8mm. default pin length is 4.8mm. a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -4- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com model input output output ripple noise efficiency notes and conditions number voltage voltage current (mv rms) (mv pp) ( % ) ( v ) ( v ) ( a ) max max min typ
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -5- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com absolute maximum rating absolute maximum rating input voltage(continuous) -0.3 80 vdc input voltage(peak/surge) -0.3 100 vdc 100ms non-repetitive case temperature -40 100 c storage temperature -55 125 c input characteristics input characteristics input voltage range 36 48 75 vdc input reflected current 200 map-p vin=48v, io1=7.5a, io2=7.5a turn-off input voltage 30 33 35 v io1=7.5a, io2=7.5a turn-on input voltage 31 34 36 v io1=7.5a, io2=7.5a turn on time 5 ms turn on delay 10 ms cnt function cnt function logic high 5 15 vdc reverse logic option available. logic low 0 1.2 vdc control current 2 ma general specifications general specifications mtbf 2300 k hrs bellcore tr332, 25c isolation 1500 vdc pin solder temperature 260 c wave solder < 15 s hand soldering time 5 s iron temperature 425c weight 65 grams characteristic min typ max units notes characteristic min typ max units notes characteristic min typ max units notes characteristic min typ max units notes
a a v60a-048l-033d025(n) output characteristics v60a-048l-033d025(n) output characteristics power 75 w output current 15/15 a output setpoint voltage 3.25 3.3 3.35 vdc vin=48v, io1=7.5a, io2=7.5a 2.45 2.5 2.55 vdc vin=48v, io1=7.5a,io2=7.5a line regulation vo1 0.2 %vo vin=36~75v, io1=7.5a, io2=7.5a vo2 0.2 %vo vin=36~75v, io1=7.5a, io2=7.5a load regulation vo1 0.5 %vo io1=0~15a, io2=0a, vin=48v vo2 0.5 %vo io1=1.5a, io2=0~15a, vin=48v dynamic response 50-75% load 5 %vo ta=25c, di/dt=1a/10s 200 s ta=25c, di/dt=1a/10s 50-25% load 5 %vo ta=25c, di/dt=1a/10s 200 s ta=25c, di/dt=1a/10s current limit threshold 16.5 25 a vin=48v,io1+io2 short circuit current 170 iomax% vin=48v, io1=io2=7.5a efficiency 78 80 % vin=48v, io1=io2=7.5a trim range 90 110 %vo over voltage protection setpoint 4.0 5 v vo=3.3v 3.0 3.9 v vo=2.5v temperature regulation 0.03 %v o/c ripple (rms) 25 mv ( 0-20mhz bw ) noise (p-p) 150 mv ( 0-20mhz bw ) over temperature protection 105 c vin=48v, io1=7.5a, io2=7.5a switching frequency 300 khz a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -6- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com characteristic min typ max units notes
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -7- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com a a v60a-048l-050d033(n) output characteristics v60a-048l-050d033(n) output characteristics power 75 w output current 15/15 a output setpoint voltage 4.95 5 5.05 vdc vin=48v, io1=7.5a, io2=7.5a 3.25 3.3 3.35 vdc vin=48v, io1=7.5a,io2=7.5a line regulation vo1 0.2 %vo vin=36~75v, io1=7.5a, io2=7.5a vo2 0.2 %vo vin=36~75v, io1=7.5a, io2=7.5a load regulation vo1 0.5 %vo io1=0~15a, io2=0a, vin=48v vo2 0.5 %vo io1=0.5a, io2=0~15a, vin=48v dynamic response 50-75% load 5 %vo t=25c, di/dt=1a/10s 200 s t=25c, di/dt=1a/10s 50-25% load 5 %vo t=25c, di/dt=1a/10s 200 s t=25c, di/dt=1a/10s current limit threshold 16.5 25 a vin=48v,io1+io2 short circuit current 170 iomax% vin=48v, io1=io2=7.5a efficiency 80 82 % vin=48v, io1=io2=7.5a trim range 90 110 %vo over voltage protection 5.75 7 v vo=5v 4.0 5 v vo=3.3v temperature regulation 0.03 %v o/c ripple (rms) 30 mv ( 0-20mhz bw ) noise (p-p) 150 mv ( 0-20mhz bw ) over temperature protection 105 c vin=48v, io1=7.5a, io2=7.5a switching frequency 300 khz characteristic min typ max units notes
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -8- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com characteristic curves characteristic curves av60a-048l-050d033(n) typical efficiency vs vin 5v:load variable; 3.3v:no load av60a-048l-050d033(n) typical efficiency vs vin 5v@0.5a; 3.3v:load variable 50 60 70 80 90 0 3 6 9 12 15 output current (amps) vin=75v vin=48v vin=36v efficiency (%) 60 65 70 75 80 85 03691215 output current (amps) vin=75v vin=48v vin=36v efficiency (%) av60a-048l-033d025(n) typical efficiency vs vin 3.3v:load variable; 2.5v:no load av60a-048l-033d025(n) typical efficiency vs vin 3.3v@1.5a; 2.5v:load variable 50 60 70 80 90 03691215 output current (amps) efficiency (%) vin=75v vin=48v vin=36v 60 65 70 75 80 0 3 6 9 12 15 output current (amps) efficiency (%) vin=75v vin=48v vin=36v
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -9- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com characteristic curves characteristic curves (continued ) (continued ) av60a-048l-050d033(n) typical cross regulation av60a-048l-033d025(n) typical cross regulation 4.976 4.984 4.992 5.000 5.008 03691215 output voltage vo1 (volts) output current io2 (amps) vin=75v vin=48v vin=36v 3.3 3.31 3.32 3.33 3.34 0 3 6 9 12 15 output voltage vo1 (volts) output current io2 (amps) vin=75v vin=48v vin=36v av60a-048l-050d033(n) typical overcurrent performance av60a-048l-033d025(n) typical overcurrent performance 1.1 1.7 2.3 2.9 3.5 4.1 4.7 5.3 0 3 6 9 12 15 18 21 output voltage (volts) output current (amps) vin=75v vin=48v vin=36v 0 0.6 1.2 1.8 2.4 3.0 3.6 0 3 6 9 12 15 18 21 output voltage (volts) output current (amps) vin=75v vin=48v vin=36v
characteristic curves characteristic curves (continued ) (continued ) a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -10- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com av60a-048l-033d025(n) typical output voltage startup from power on av60a-048l-050d033(n) typical output voltage startup from power on output current io2(a) -40c 80 100c soa case temperature 15a max 12a av60a-048l-033d025(p) typical transient response 25%- 50%- 25% av60a-048l-050d033(p) typical transient response 25%- 50%- 25% typical output current safe operating area vs case temperature (natural convection)
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -11- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com pin location pin location the +vin and -vin input connection pins are located as shown in figure 1. av60a dual out- put converters have a 2:1 input voltage range and 48 vin converters can accept 36-75 vdc. care should be taken to avoid applying reverse polarity to the input which can damage the con- verter. input characteristic input characteristic fusing fusing the av60a dual output power module has no internal fuse. an external fuse must always be employed! to meet international safety requirements, a 250 volt rated fuse should be used. if one of the input lines is con- nected to chassis ground, then the fuse must be placed in the other input line. standard safety agency regulations require input fusing. recommended fuse ratings for the av60a dual output series are 6-8a. input reverse v input reverse v oltage protection oltage protection under installation and cabling conditions where reverse polarity across the input may occur, reverse polarity protection is recommended. protection can easily be provided as shown in figure 2. in both cases the diode rating is 7.5a/100v. placing the diode across the inputs rather than in-line with the input offers an advantage in that the diode only conducts in a reverse polarity condition, which increases circuit efficiency and ther- mal performance. input undervoltage protection input undervoltage protection the av60a series is protected against under- voltage on the input. if the input voltage drops below the acceptable range, the converter will shut down. it will automatically restart when the undervoltage condition is removed. input filter input filter input filters are included in the converters to help achieve standard system emissions certifi- cations. some users however, may find that additional input filtering is necessary. the av60a series has an internal switching fre- quency of 300 khz, so a high frequency capac- itor mounted close to the input terminals pro- duces the best results. to reduce reflected noise, a capacitor can be added across the input as shown in figure 3, forming a filter. a 470 f/100v electrolytic capacitor is recom- mended for c1. for conditions where emi is a concern, a differ- +vin cnt case -vin 2.40 (60.96) 2.28 (57.91) trim1 -vo1 +vo1 trim2 -vo2 +vo2 fig.1 pins location ( baseplate-side footprint ) +vin -vin +vin -vin fig.2. reverse polarity protection circuits
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -12- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com ent input filter can be used. figure 4 shows an input filter designed to reduce emi effects. c 1 is a 470 f/100v electrolytic capacitor, and c 2 is a 1 f/100v metal film or ceramic high frequency capacitor, c y1 and c y2 are each 1000pf/1500vdc high frequency ceramic capacitors, and l1 is a 1mh common mode choke. when a filter inductor is connected in series with the power converter input, an input capac- itor c 1 should be added. an input capacitor c 1 should also be used when the input wiring is long, since the wiring can act as an inductor. failure to use an input capacitor under these conditions can produce large input voltage spikes and an unstable output. cnt function cnt function the av60a dual output series provides a con- trol function allowing the user to turn the output on and off using an external circuit. two remote on/off options are available. positive logic applying a voltage less than 1.2v to the cnt pin will disable the output, and applying a volt- age greater than 5v will enable it. negative logic applying a voltage less than 1.2v to the cnt pin will enable the output, and applying a voltage greater than 5v will disable it. the per- formance of the converter between these two points will depend on the individual converter and whether the control voltage is increasing or decreasing. if the cnt pin is left open, the converter will default to ?control on? operation for posi- tive logic, but default to ?control off? for negative logic. the maximum voltage that can be applied to the control pin is 15 volts. if the cnt function is not used: negative logic: connect cnt pin to vi(-). positive logic: leave cnt pin open. +v in -v in c 1 c 2 c y1 c y2 l 1 fig.4 emi reduction input filter -v in cnt -v in cnt -v in cnt -v in cnt fig.8 relay control fig.5 simple control fig.6 transistor control fig.7 isolated control +vin -vin c1 fig.3 ripple rejection input filter
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -13- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com input-output characteristic input-output characteristic safety consideration safety consideration for safety-agency approval of the system in which the power module is used, the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standard, i.e., ul1950, csa c22.2 no. 950-95, and en60950. the input-to-output 1500vdc isolation is an opera- tional insulation. the dc/dc power module should be installed in end-use equipment, in compliance with the requirements of the ulti- mate application, and is intended to be supplied by an isolated secondary circuit. when the sup- ply to the dc/dc power module meets all the requirements for selv(<60vdc), the output is considered to remain within selv limits (level 3). if connected to a 60vdc power system, dou- ble or reinforced insulation must be provided in the power supply that isolates the input from any hazardous voltages, including the ac mains. one vi pin and one vo pin are to be grounded or both the input and output pins are to be kept floating. single fault testing in the power supply must be performed in combina- tion with the dc/dc power module to demon- strate that the output meets the requirement for selv. the input pins of the module are not operator accessible. note : do not ground either of the input pins of the module, without grounding one of the output pins. this may allow a non-selv voltage to appear between the output pin and ground. case grounding case grounding for proper operation of the module, the case or baseplate of the the av60a dual output series module does not require a connection to a chassis ground. if the series is not in a metallic enclosure in a system, it may be advisable to directly ground the case to reduce electric field emissions. leaving the case floating can help to reduce magnetic field radiation from common mode noise currents. if the case has to be grounded for safety or other reasons, an induc- tor can be connected to chassis at dc and ac line frequencies, but be left floating at switching fre quencies. under the condition, the safety require- ments are met and the emissions are minimized. output characteristics output characteristics minimum load requirement minimum load requirement in order to maintain proper operation and spec- ifications, there is a 1.5a minimum load require- ment on +vo1(3.3v output) for av60a-048l- 033d025(n), and 0.5a minimum load require- ment on +vo1(5v output) for av60a-048l- 050d033(n). contact the factory for details. output over-v output over-v oltage protection oltage protection the over-voltage protection has a separate feedback loop which activates when the output voltage is between 120% and 150% of the nominal output voltage. when an over-voltage condition occurs, a ? turn off ? signal was sent to the input of the module which will shut down the output. the module will restart after power on again. output t output t rimming rimming users can increase or decrease the output volt- age by adding an external resistor between the trim pin and either the vo (+ ) or vo ( - ) pins. the trim resistor should be positioned close to the module. if the trim feature is not used, leave the trim pin open. trimming up by more than 10% of the nominal output may damage the converter. trimming down more than 10% can cause the converter to regulate improperly. trim down and trim up circuits and equations are shown in following figures. note that at elevated output voltages the maximum power rating of the module remains the same, and the output current capability will decrease correspondingly.
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -14- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com where v o is the output voltage after trim-up.  r u1 is in k ? . load r u1 -vin case cnt +vin trim1 trim2 v o1- v o1+ v o2+ v o2- 5v out: r u1 =  ( 5.76 - vo' ) x 3.3 v o ' - 5 3.3v out: r u1 =  ( 3.776 - vo' ) x 5.11 v o ' - 3.3 av60a-048l-050d033(n): av60a-048l-033d025(n): fig.9 output voltage vo1 trim-up adjustment resistor value (k ? ) output voltage trim-up ( volts ) 5 5.05 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 0 5 10 15 20 25 30 35 40 45 50 fig.10 typical trim-up curves for av60a-048l-050d033(n) 5v outputs adjustment resistor value (k ? ) output voltage trim-up ( volts ) 3.333 3.366 3.399 3.432 3.465 3.498 3.531 3.564 3.597 3.63 2 101826344250586674 fig.11 typical trim-up curves for av60a-048l-033d025(n) 3.3v outputs  3.3v out: r u2 =  ( 5.825 - vo' ) x 0.33 vo' - 3.3 load r u2 -vin cnt +vin trim1 trim2 v o1- v o1+ v o2+ v o2- 2.5v out: r u2 =  ( 3.1388 - vo' ) x 10 v o ' - 2.5 where v o is the output voltage after trim-up.  r u2 is in k ? . av60a-048l-050d033(n): av60a-048l-033d025(n): case fig.12 output voltage vo2 trim-up adjustment resistor value (k ? ) output voltage trim-up ( volts ) 3.333 3.366 3.399 3.432 3.465 3.498 3.531 3.564 3.597 3.63 0 3 6 9 12 15 18 21 24 27 fig.13 typical trim-up curves for av60a-048l-050d033(n) 3.3v outputs 2.525 2.55 2.575 2.6 2.625 2.65 2.675 2.7 2.725 2.75 0 25 50 75 100 125 150175 200 225 250 adjustment resistor value (k ? ) output voltage trim-up ( volts ) fig.14 typical trim-up curves for av60a-048l-033d025(n) 2.5v outputs component-side footprint
usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -15- load r d1 -vin case cnt +vin trim1 trim2 v o1- v o1+ v o2+ v o2- where vo' is the output voltage after trim-down.  r d1 is in k ? . av60a-048l-050d033(n): av60a-048l-033d025(n): 5v out: r d1 =  ( vo' - 4.42 ) x 4.3 5-v o ' 3.3v out: r d1 =  ( vo' - 2.785) x 6.8 3.3-v o ' fig.15 output voltage vo1 trim-down adjustment resistor value (k ? ) output voltage trim-down ( volts ) 4.5 4.55 4.6 4.65 4.7 4.75 4.8 4.85 4.9 4.95 5 0 5 10 15 20 25 30 35 40 45 adjustment resistor value (k ? ) output voltage trim-down ( volts ) 2.97 3.003 3.036 3.069 3.102 3.135 3.168 3.201 3.234 3.267 3.3 0 102030405060708090100 fig.17 typical trim-down curves for av60a-048l-033d025(n) 3.3v outputs load r d2 -vin case cnt +vin trim1 trim2 v o1- v o1+ v o2+ v o2- where vo' is the output voltage after trim-down.  r d2 is in k ? . 2.5v out: r d2 =   ( v o ' - 2.0773 ) x 15.11 2.5-vo'  3.3v out: r d2 =  ( v o ' - 2.89 ) x 0.66 3.3-vo' av60a-048l-050d033(n): av60a-048l-033d025(n): fig.18 output voltage vo2 trim-down adjustment resistor value (k ? ) output voltage trim-down ( volts ) 2.97 3.003 3.036 3.069 3.102 3.135 3.168 3.201 3.234 3.267 3.3 012345678 2.25 2.275 2.3 2.325 2.35 2.375 2.4 2.425 2.45 2.475 0 25 50 75 100 125 150175 200 225 250 adjustment resistor value (k ? ) output voltage trim-down ( volts ) fig.20 typical trim-down curves for av60a-048l-033d025(n) 2.5v outputs fig.16 typical trim-down curves for av60a-048l-050d033(n) 5v outputs fig.19 typical trim-down curves for av60a-048l-050d033(n) 3.3v outputs component-side footprint
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -16- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com output over-current protection output over-current protection av60a dual output dc/dc converters feature continuously current limiting as part of their overcurrent protection (ocp) circuits. when output current exceeds 110 to 140% of rated current, such as during a short circuit condition, the output will shutdown immediately, and can tolerate short circuit conditions indefinitely. when the overcurrent condition is removed, the converter will automatically restart. output filters output filters when the load is sensitive to ripple and noise, an output filter can be added to minimize the effects. a simple output filter to reduce output ripple and noise can be made by connecting a capacitor across the output as shown in figure 21. the recommended value for the output capacitor c1 is 470 f/16v. extra care should be taken when long leads or traces are used to provide power to the load. long lead lengths increase the chance for noise to appear on the lines. under these con- ditions c2 can be added across the load as shown in figure 22. the recommended compo- nent for c2 is 470 f/16v capacitor and con- necting a 0.1 f ceramic capacitor c1 in paral- lel generally. decoupling decoupling noise on the power distribution system is not always created by the converter. high speed analog or digital loads with dynamic power demands can cause noise to cross the power inductor back onto the input lines. noise can be reduced by decoupling the load. in most cases, connecting a 10 f tantalum capacitor in paral- lel with a 0.1 f ceramic capacitor across the load will decouple it. the capacitors should be connected as close to the load as possible. ground loops ground loops ground loops occur when different circuits are given multiple paths to common or earth ground, as shown in figure 23. multiple ground points can slightly different potential and cause current flow through the circuit from one point to another. this can result in additional noise in all the circuits. to eliminate the problem, circuits should be designed with a single ground con- nection as shown in figure 24. parallel power distribution parallel power distribution figure 25 shows a typical parallel power distri- bution design. such designs, sometimes called daisy chains, can be used for very low output currents, but are not normally recommended. the voltage across loads far from the source +v out -v out load c 1 c 2 fig.22 output ripple filter for a distant load +v out -v out load c 1 fig.21. output ripple filter +vout -vout load load r line r line r line r line r line +vout -vout load load r line r line r line r line r line r line ground loop fig.23 ground loops fig.24 single point ground
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -17- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com can vary greatly depending on the ir drops along the leads and changes in the loads clos- er to the source. dynamic load conditions increase the potential problems. radial power distribution radial power distribution radial power distribution is the preferred method of providing power to the load. figure 26 shows how individual loads are connected directly to the power source. this arrangement requires additional power leads, but it avoids the voltage variation problems associated with the parallel power distribution technique. mixed distribution mixed distribution in the real world a combination of parallel and radial power distribution is often used. dynamic and high current loads are connected using a radial design, while static and low current loads can be connected in parallel. this combined approach minimizes the drawbacks of a parallel design when a purely radial design is not feasi- ble. thermal management thermal management t t echnologies echnologies av60a dual output series modules feature high efficiency, the 5v/3.3 v output units have typical efficiency of 82% at full load, and the 3.3v/2.5v output units have typical efficiency of 80% at full load. with less heat dissipation and tempera- ture-resistant components such as ceramic capacitors, these modules exhibit good behav- ior during prolonged exposure to high tempera- tures. maintaining the operating case tempera- ture (tc) within the specified range help keep internal-component temperatures within their specifications which in turn help keep mtbf from falling below the specified rating. proper cooling of the power modules is also necessary for reliable and consistent operation. basic thermal management basic thermal management measuring the case temperature of the module (tc) as the method shown in figure 28 can ver- ify the proper cooling. figure 28 shows the metal surface of the module and the pin loca- tions. the module should work under 90c for the reliability of operation and t c must not exceed 100 c while operating in the final sys- tem configuration. the measurement can be made with a surface probe after the module has reached thermal equilibrium. if a heat sink is mounted to the case, make the measurement as close as possible to the indicated position. it makes the assumption that the final system configuration exists and can be used for a test environment. the following text and graphs show guidelines to predict the thermal performance of the mod- ule for typical configurations that include heat sinks in natural or forced airflow environments. note that tc of module must always be checked load 1 load 2 load 3 +vout -vout r l1 r l2 r l3 r g1 r g2 r g3 r l = lead resistance r g = ground lead resistance load 4 r l4 r g4 fig.27 mixed power distribution load 1 load 2 load 3 +vout -vout r l1 r l2 r l3 r g1 r g2 r g3 r l = lead resistance r g = ground lead resistance fig.26 radial power distribution load 1 load 2 load 3 +vout -vout r l1 r l2 r l3 r g1 r g2 r g3 i 1 + i 2 + i 3 i 2 + i 3 i 3 r l = lead resistance r g = ground lead resistance fig.25 parallel power distribution
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -18- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com in the final system configuration to verify proper operational due to the variation in test condi- tions. thermal management acts to transfer the heat dissipated by the module to the surrounding environment. the amount of power dissipated by the module as heat (p d ) is got by the equa- tion below: p d = p i -p o where : p i is input power; p o is output power; p d is dissipated power. also, module efficiency ( ) is defined as the fol- lowing equation: = p o / p i if eliminating the input power term, from two above equations can yield the equation below: p d = p o ( 1 - ) / the module power dissipation then can be cal- culated through the equation. because each power module output voltage has a different power dissipation curve, a plot of power dissipation versus output current over three different line voltages is given in each module-specific data sheet. the typical power dissipation curves of av60a series are shown as figure 29 to figure 32. 29.0 (1.14) 30.5 (1.2) +vin case cnt -vin measure case temperature here pin-side view dimensions: millimeters (inches) trim1 -vo1 +vo1 trim2 -vo2 +vo2 fig.28 case temperature measurement ( component-side footprint ) 3.00 5.00 7.00 9.00 11.00 13.00 15.00 17.00 19.00 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 output current (amps) power dissipation (w) vin=75v vin=48v vin=36v fig.29 av60a-048l-050d033(n ) power dissipation curves, 5v:load variable, 3.3v:no load 5.00 7.00 9.00 11.00 13.00 15.00 17.00 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 output current (amps) power dissipation (w) vin=75v vin=48v vin=36v fig.30 av60a-048l-050d033(n ) power dissipation curves, 5v@1.5a, 3.3v:load variable 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 output current (amps) power dissipation (w) vin=75v vin=48v vin=36v fig.31 av60a-048l-033d025(n ) power dissipation curves, 3.3v:load variable, 2.5v:no load
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -19- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com module derating module derating experiment setup experiment setup from the experimental set up shown in figure 33, the derating curves as figure 34 can be drawn. note that the pwb ( printed-wiring board ) and the module must be mounted verti- cally. the passage has a rectangular cross- section. the clearance between the facing pwb and the top of the module is kept 13 mm (0.5 in.) constantly. convection w convection w ithout heat sinks ithout heat sinks heat transfer can be enhanced by increasing the airflow over the module. figure 34 shows the maximum power that can be dissipated by the module. in the test, natural convection airflow was mea- sured at 0.05 m/s to 0.1 m/s (10 ft./min. to 20 ft./min.). the 0.5 m/s to 4.0 m/s (100 ft./min. to 800 ft./min.) curves are tested with externally adjustable fans. the appropriate airflow for a given operating condition can be determined through figure 34. example 1. how to calculate the minimum airflow required to maintain a desired tc? if a av60a-048l-050d033(n) module operates with a 48v line voltage, a 15 a of io2, and a 40 c maximum ambient temperature, what is the minimum airflow necessary for the operating? determine p d ( referenced fig.30 ) with con- dition: vin = 48v, l o1 = 1.5a, l o2 = 15a get: p d = 15.5w from: t a = 40 c determine airflow ( fig.34 ): v = 2 m/s ( 400 ft./min. ) ambient temperature, t a (c) power dissipation p d (w) 4.0 m/s (800 ft./min.) 1.0 m/s (200 ft./min.) 2.0 m/s (400 ft./min.) 3.0 m/s (600 ft./min.) 0.5 m/s (100 ft./min.) natural convection (10-20 ft./min.) 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100 fig.34 forced convection power derating without heat sink 3.00 4.50 6.00 7.50 9.00 10.50 12.00 13.50 15.00 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 output current (amps) power dissipation (w) vin=75v vin=48v vin=36v fig.32 av60a-048l-033d025(n ) power dissipation curves, 3.3v@1.5a, 2.5v:load variable dimensions: millimeters (inches). facing pwb pwb module 50.8(2.0) air velocity and ambient temperature testing point air flow 13(0.5) fig.33 experiment set up
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -20- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com example 2. how to calculate the maximum output power of a module in a certain con- vection and a max. t a ? what is the maximum power output for a av60a-048l-050d033(n) operating at follow- ing conditions: vin = 48v v = 2.0 m/s (400 ft./min.) t a = 40 c determine p d ( fig.34 ) p d = 16 w determine i o (fig. 29 ): i o = 14.5 a calculate p o : p o = (v o ) x (i o ) = 5 x 14.5 = 72.5 w although the two examples above use 100 c as the maximum case temperature, for extremely high reliability applications, one may design to a lower case temperature as shown in example 4 on page 22. heat sink configuration heat sink configuration several standard heat sinks are available for the av60a dual output modules as shown in figure 35 to figure 37. the heat sinks mount to the top surface of the module with screws torqued to 0.56 n-m (5 in.- lb). a thermally conductive dry pad or thermal grease is placed between the case and the heat sink to minimize contact resistance (typi- cally 0.1 c/w to 0.3 c/w) and temperature dif- ferential. nomenclature for heat sink configurations is as follows: wdxyyy40 where: x = fin orientation: longitudinal (l) or trans verse (t) yyy = heat sink height (in 100ths of inch) for example, wdt5040 is a heat sink that is transverse mounted (see figure 25) for a 61 mm x 57.9 mm (2.4 in.x 2.28 in.) module with a heat sink height of 0.5 in. heatsink mounting advice heatsink mounting advice a crucial part of the thermal design strategy is the thermal interface between the baseplate of the module and the heatsink. inadequate mea- sures taken here will quickly negate any other attempts to control the baseplate temperature. for example, using a conventional dry insulator can result in a case-heatsink thermal imped- ance of >0.5 c/w, while use one of the rec- ommended interface methods (silicon grease or thermal pads available from astec) can result in a case-heatsink thermal impedance around 0.1c/w. dimensions: millimeters (inches). wdt10040 61 (2.4) wdt02540 wdt05040 57.9 (2.28) 1/4 in. 1/2 in. 1 in. fig.37 transverse fins heat sink 89.1(3.51) 57.0 (2.24) 11.8 (0.465) 4.9(0.193) dimensions: millimeters (inches). fig.35 non standard heatsink dimensions: millimeters (inches). 57.9 (2.28) 61 (2.4) wdl10040 wdl02540 wdl05040 1/4 in. 1/2 in. 1 in. fig.36 longitudinal fins heat sink
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -21- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com natural convection with heat sink natural convection with heat sink the power derating for a module with the heat sinks ( shown as figure 35 to figure 37) in nat- ural convection is shown in figure 39. in this test, nature convection generates airflow about 0.05 m/s to 0.1 m/s ( 10ft./min to 20ft./min ). figure 39 can be used for heat-sink selection in natural convection environment. example 3. how to select a heat sink ? what heat sink would be appropriate for a av60a-048l-033d025(n) in a natural convec- tion environment at nominal line, full load, and maximum ambient temperature of 40c? determine p d ( referenced fig.31 ) with con- dition: v in = 48 v i o = 15 a t a = 40 c get: p d = 11.5 w determine heat sink (fig.39 ): 1/2 in. allows up to t a = 40 c basic thermal model basic thermal model there is another approach to analyze module thermal performance, to model the overall ther- mal resistance of the module. this presentation method is especially useful when considering heat sinks. the following equation can be used to calculate the total thermal resistance . r ca = ? t c , max / p d where r ca is the total module thermal resis- tance. ? t c , max is the maximum case temperature rise. p d is the module power dissipation. in this model, p d , ? t c, max , and r ca are equals to current flow, voltage drop, and electrical resistance, respectively, in ohm's law, as shown in figure 40. also, ? t c, max is defined as the difference between the module case tem- perature (t c ) and the inlet ambient temperature (t a ). ? t c , max = t c - t a where t c is the module case temperature; t a is the inlet ambient temperature. for av60a dual output series converters, the module's thermal resistance values versus air p d thermal resistance rc a fig.40 basic thermal resistance model fig.38 heat sink mounting 0 10203040 90100 0 20 25 30 35 local ambient temperature, t a (c) power dissipation, p d (w) 15 10 5 50 60 70 80 1 1/2 in. 1 in. 1/2 in. 1/4 in. none fig.39 heat sink power derating curves, natural convection
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -22- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com velocity have been determined experimentally and shown in figure 41. the highest values on each curve represents the point of natural con- vection. figure 41 is used for determining thermal per- formance under various conditions of airflow and heat sink configurations. example 4. how to determine the allowable minimum airflow to heat sink combinations necessary for a module under a desired tc and a certain condition? although the maximum case temperature for the av60a dual output series converters is 100 c, you can improve module reliability by limiting tc,max to a lower value. how to decide? for example, what is the allowable minimum airflow for av60a-048l-050d033(n) heat sink combinations at desired tc of 80 c? the working condition is as following: vin = 48v i o1 = 1.5 a i o2 = 13.5 a t a = 40 c. determine p d ( fig.30 ) p d = 13.5 w then solve r ca : : r ca = ? t c , max / p d r ca = ( t c ? t a ) / p d r ca = ( 80 ? 40 ) / 13.5 = 3 c/w determine air velocity from figure 41: if no heat sink: v = 2.7 m/s (540 ft./min.) if 1/4 in. heat sink: v = 1.9 m/s (380 ft./min.) if 1/2 in. heat sink: v = 1.2 m/s (24 ft./min.) if 1 in. heat sink: v = 0.4 m/s (80 ft./min.) example 5. how to determine case tempera- ture ( tc ) for the various heat sink configu- rations at certain air velocity? what is the allowable tc for av60a-048l- 033d025(n) heat sink configurations at desired air velocity of 2.0 m/s, and it is operating at a 48 v line voltage, a total output current of 15a, a 40 c maximum ambient temperature? determine p d ( fig. 32. ) with condition: vi = 48v i o1 = 1.5 a, i o2 = 13.5 a t a = 40 c v = 2.0 m/s (400 ft./min.) get: p d = 11.5 w determine t c : t c = (r ca x p d ) + t a determine the corresponding thermal resis- tances ( r ca ) from figure 41: no heat sink: r ca = 3.8 c/w t c = (3.8 x 11.5) + 40 = 83.7 c 1/4 in. heat sink: r ca = 2.8 c/w t c = (2.8 x 11.5) + 40 = 72.2 c 1/2 in. heat sink: r ca = 2.0 c/w t c = (2 x 11.5) + 40 = 63 c 1 in. heat sink: r ca = 1.2 c/w t c = (1.2 x 11.5) + 40 = 53.8 c in this configuration, the module does not need the heat sink and the power module does not exceed the maximum case temperature of 100 c. 0 0.5(100) 1.0(200) 1.5(300) 2.0(400) 2.5(500) 3.0(600) 0 1 5 6 7 8 air velocity m/s (ft./min.) 4 3 2 case-ambient thermal resistance r ca (c/w) 1 in. heat sink 1/2 in. heat sink 1/4 in. heat sink no heat sink fig.41 case-to-ambient thermal resistance curves; either orientation
a a a a v v v v 6 6 6 6 0 0 0 0 a a a a d d d d u u u u a a a a l l l l o o o o u u u u t t t t p p p p u u u u t t t t h h h h a a a a l l l l f f f f - - b b b b r r r r i i i i c c c c k k k k p p p p o o o o w w w w e e e e r r r r c c c c o o o o n n n n v v v v e e e e r r r r t t t t e e e e r r r r s s s s 3 3 3 3 6 6 6 6 v v v v d d d d c c c c t t t t o o o o 7 7 7 7 5 5 5 5 v v v v d d d d c c c c i i i i n n n n p p p p u u u u t t t t , , , , 7 7 7 7 5 5 5 5 w w w w a a a a t t t t t t t t o o o o u u u u t t t t p p p p u u u u t t t t -23- usa europe asia tel: 1-760-930-4600 44-(0)1384-842-211 852-2437-9662 fax: 1-760-930-0698 44-(0)1384-843-355 852-2402-4426 www.astec.com mechanical considerations mechanical considerations installation installation although av60a dual output converters can be mounted in any orientation, free air-flowing must be taken. normally power components are always put at the end of the airflow path or have the separate airflow paths. this can keep other system equipment cooler and increase component life spans. soldering soldering av60a dual output converters are compatible with standard wave soldering techniques. when wave soldering, the converter pins should be preheated for 20-30 seconds at 110c, and wave soldered at 260c for less than 15 seconds. when hand soldering, the iron temperature should be maintained at 450c and applied to the converter pins for less than 5 seconds. longer exposure can cause internal damage to the converter. cleaning can be performed with cleaning solvent ipa or with water. mtbf mtbf the mtbf, calculated in accordance with bellcore tr-nwt-000332 is 2,300,000 hours. obtaining this mtbf in practice is entirely pos- sible. it means providing forced air cooling of at least 300 lfm. if the ambient air temperature is expected to exceed +25c, then we also advise a heatsink on the av60a series, orient- ed for the best possible cooling in the air stream. astec can supply replacements for converters from other manufacturers, or offer custom solu- tions. please contact the factory for details. mechanical chart mechanical chart ( ( baseplate-side footprint baseplate-side footprint ) ) -vin case cnt +vin +vo2 -vo2 trim2 5.1 (0.2) 10.16 (0.4) 15.24 (0.6) 4.8 (0.19) 48.26 (1.9) 10.16 (0.4) 10.16 (0.4) 7.62 (0.3) 57.9 (2.28) 61.0 (2.4) mm (inches) 5.8 (0.23) optional 12.7 (0.5) mounting inserts m3 thru hole x4 7.62 (0.3) 7.62 (0.3) 7.62 (0.3) 5.1 (0.2) +vo1 -vo1 trim1 10 - 1.0(0.04)  12.70 (0.5) pin length option 3.80mm ! 0.25mm 0.150in. ! 0.010in. 2.80mm ! 0.25mm 0.110in. ! 0.010in. 5.8mm ! 0.5mm 0.228in. ! 0.020in. device code suffix -6 -8 -7  tolerances: inches millimeters .xx ! 0.020 .x ! 0.5 .xxx ! 0.010 .xx ! 0.25  pins >4mm ! 0.02inch ( ! 0.5mm) <4mm ! 0.01inch ( ! 0.25mm) 
part number description ss pp c -0 iv l- xxx f yy h n - p - mx -options p = pin length omit this digit for standard 5mm 6 = 3.8mm, 7= 5.8mm iv = input voltage 8 = 2.8mm 05 = range centered on 5v 12 = range centered on 12v enable logic polarity 24 = 18 to 36(2:1), 9 to 36v(4:1) omit for positive enable logic 36 = 20 to 60v n = negative enable 46 = 18v to 75v (4:1) except: ak60c-20h, bk60c-30h 48 = typ 36 to 75v omit for negative logice p = positive logic c = pinout compatability a= astec footprint or "non lucent" footprint h = high efficiency (synch rect.) c= ind std, exact lucent drop in omit h if conventional diode (low eff) yy = output current pp = package type ie. 08 = 8 amps 40 = 1" x 2" smd 42 = 1.5" x 2" smd f = # of outputs 45 = 1.45" x 2.3" (1/4 brk) f = single output 60 = 2.4" x 2.3" (1/2 brk) d = dual output 80 = full size 4.6" x 2.4" 72= 2.35" x 3.3 (3/4 brk) xxx = output voltage format is xx.x (ie 1.8v = 018) ss = series aa = 1/2brick dual (old designator) ak = ind std sizes (1/4, 1/2, full) <150w mx = options am/bm = full size, astec pin out m1,m2 = .25" height heatsink al = half size, astec pin-out m3,m4 = .5" height heatsink bk = ind std size =>150w or feature rich m5.m6 = 1.0" height heatsink av = avansys product note: for some products, they may not conform with the part number description above absolutely. revision q attachment i page 1 of 2
new part number description acs ii v 1 v 2 v 3 v in - e t p mx output voltage a = 5.0v e = 7.5v f = 3.3v b = 12v, c = 15v g = 2.5v l = 8v , h = 24v, r = 28v d = 2.0v / 2.1v omit v2 and v3 if single output y = 1.8v omit v3 if dual output m = 1.5v ie for dual output 5 and 3.3v k = 1.2v v1 =a, v2 = f, v3 =omit j = 0.9v v1 =a, v2 = f, v3 =omit ii = output current max ie 60 = 60 amps vin = input voltage range 300 = 250v to 450v s = size 48 = 36v to 75v f = full brick 24 = 18v to 36v h = half brick 03 = 1.8v to 5.0v q = quarter brick 08 = 5.0v to 13.0v s = 1 x 2 18 pin smt pfc: power factor corrected e = 1 x 2 thru hole c = (.53x1.3x.33) smt (austin lite drop in) e = enable logic for > 15w v = conventional package (2x2.56") or ( omit this digit for positive enable a = sip n = negative logic w = convent pkg (wide 2.5x3) e = enable logic for < 15w r = 1 x 1 thru hole omit this digit for no enable option a = sip 1 = negative logic t = 1.6 x 2 4 = positive logic c = construction trim for 1w to 15w e = enhanced thermals (baseplate or adapter plate) 9 = trim added i = integrated (full featured) hong kong models l = low profile (open frame, no case - isolated) p = open frame (sip or smt) non-isolated p = pin length omit this digit for standard 5mm 6 = 3.8mm 8 = 2.8mm 7 = 5.8 mm mx - factory options customer specific note: for some products, they may not conform with the new part number description above absolutely. revision q attachment i page 2 of 2


▲Up To Search▲   

 
Price & Availability of AV60A-048L-033D025N-8L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X